


## AGILENT ICF FOR GC

Clarity Control Module ENG

Code/Rev.: M207/100B Date: 2025-10-22

Phone: +420 251 013 400 clarity@dataapex.com www.dataapex.com DataApex Ltd.
Petrzilkova 2583/13
158 00 Prague 5
Czech Republic



# **Contents**

| 1 Agilent ICF for GC                          |    |
|-----------------------------------------------|----|
| 2 Requirements                                | 2  |
| 2.1 Software requirements                     | 2  |
| 2.2 Hardware requirements                     | 2  |
| 3 Installation procedure                      | 8  |
| 3.1 Installing Correct Version of Agilent ICF | 8  |
| 3.2 Network connections                       | 9  |
| 3.3 Clarity Configuration                     | 10 |
| 3.4 Headspace Sampler configuration           | 14 |
| 3.5 Using Valve for Gas Sampling              | 20 |
| 3.6 Installation Qualification of Agilent ICF | 23 |
| 4 Using the Agilent ICF GC                    | 26 |
| 4.1 Method Setup - GC                         | 26 |
| 4.2 Method Setup - AS                         | 28 |
| 4.3 Device Monitor                            | 29 |
| 5 Troubleshooting                             | 31 |
| 5.1 Specific Problems                         | 32 |
|                                               |    |

Agilent ICF for GC Table of Contents

To facilitate the orientation in the **Agilent ICF for GC** manual and **Clarity** chromatography station, different fonts are used throughout the manual. Meanings of these fonts are:

Open File (italics) describes the commands and names of fields in **Clarity**, parameters that can be entered into them or a window or dialog name.

WORK1 (capitals) indicates the name of the file and/or directory.

ACTIVE (capital italics) marks the state of the station or its part.

Chromatogram (blue underlined) marks clickable links referring to related chapters.

The bold text is sometimes also used for important parts of the text and the name of the **Clarity** station. Moreover, some sections are written in format other than normal text. These sections are formatted as follows:

Note: Notifies the reader of relevant information.

Caution: Warns the user of possibly dangerous or very important information.

### Marks the problem statement or trouble question.

Description: Presents more detailed information on the problem, describes its causes,

etc

Solution: Marks the response to the question, presents a procedure how to remove it.

Agilent ICF for GC 1 Agilent ICF for GC

# 1 Agilent ICF for GC

This manual describes the use of the **Agilent ICF for GC** (Instrument Control Framework) with the **Clarity** software. The list of ICF versions that **Clarity** comes with is available on www.dataapex.com website on ICF control product page.



Fig. 1: Agilent ICF

The **Clarity** chromatography station enables to control various laboratory equipment from **Agilent** using the **Agilent ICF for GC**. It is library developed by **Agilent** which can be run within the **Clarity** Chromatography Station environment. This manual describes the basic use within the **Clarity**.

Thus the **Agilent ICF** dialogs and setup windows are displayed within **Clarity**, the manuals are supplied by the Agilent company both for the instrument and the configuration dialogs of the **ICF**. For the detailed help of the respective controlled instruments and functions of the **Agilent ICF** dialogs, press the *Help* or *F1* button in the displayed dialogs. Remember that some of the dialogs embedded into the <u>Method Setup</u> window are also part of the **Agilent ICF** library and pressing the <u>F1</u> key also displays the Agilent ICF for GC **Help** which is not created by **DataApex Ltd.**.

For complete list of controlled instruments by the **Agilent ICF** library, see the **Clarity** Controls web-page: www.dataapex.com/controls.

# 2 Requirements

## 2.1 Software requirements

**Agilent ICF for GC** requires **Microsoft .NET version 4.8** or higher for correct installation and operation. This versions is already installed on majority of PCs. Nonetheless you will be notified during the installation if your PC is missing required version of **Microsoft .NET** - then follow the instructions there. For complete list of .NET requirements, see the .NET Framework System Requirements on Microsoft web page.

Supported operating systems:

- Windows 10 (64 bit)
- Windows 11 (64 bit)

Note: Before installing **Clarity**, it is recommended that your **Windows** is updated to the latest version

## 2.2 Hardware requirements

- Version of firmware must be compatible with the Agilent ICF GC installed with Clarity.
- LAN interface installed on PC is required.
- Latest available firmware version of the module should be used to ensure maximum compatibility.

Tab. 1: Supported Agilent GC hardware:

|      | Module type Inlets |                                                          | Detectors                                                  |
|------|--------------------|----------------------------------------------------------|------------------------------------------------------------|
|      | G3540A             | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
| 8890 | G3542A             | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
| 0090 | G3543A             | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
|      | G3545A             | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
| 8860 | G2790A             | S/S, P/P, COC, PCI                                       | TCD, FID, NPD, ECD,<br>FPD, FPD+                           |

|             | Module type | Inlets                                                      | Detectors                                                  |
|-------------|-------------|-------------------------------------------------------------|------------------------------------------------------------|
| 8850        | G3940A      | S/S, P/P, COC                                               | TCD, FID                                                   |
| 0030        | G3941A      | S/S, P/P, COC                                               | TCD, FID                                                   |
|             | G3950A      | S/S, MMI, HCM                                               | TCD, FID, NPD, FPD<br>ECD, ECD, NCD, SCD                   |
| Intuvo 9000 | G3952A      | S/S, MMI, HCM                                               | TCD, FID, NPD, FPD<br>ECD, ECD, NCD, SCD                   |
|             | G3953A      | S/S, MMI, HCM                                               | TCD, FID, NPD, FPD,<br>ECD, NCD, SCD                       |
|             | G3440B      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
| 7890B &     | G3442B      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
| 7890A+      | G3443B      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
|             | G3445B      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB, NCD, SCD |
|             | G3440A      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB           |
| 7890A       | G3442A      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB           |
| 7090A       | G3443A      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB           |
|             | G3445A      | S/S, P/P, COC, PTV,<br>HCM, PCM, VI, MMI,<br>HT-PTV, LTM II | TCD, FID, NPD, FPD<br>ECD, HSM, DualWFPD,<br>AIB           |
| 7820        | G4350A      | S/S, P/P, COC, PCI                                          | TCD, FID, NPD, µECD, FPD, FPD+                             |
| 6890A       | G1530A      | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I                       | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB          |
|             | G1540A      | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I                       | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB          |

|          | Module type | Inlets                                | Detectors                                         |
|----------|-------------|---------------------------------------|---------------------------------------------------|
| 6890Plus | G1530A      | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB |
| 0030FluS | G1540A      | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB |
| COOON    | G1530N      | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB |
| 6890N    | (-1540N     | S/S, P/P, COC, PTV,<br>PCM, VI, LTM I | TCD, FID, NPD, FPD<br>ECD, µECD,<br>DualWFPD, AIB |
| 6850     | G2630A/B    | S/S, P/P, COC, PTV                    | TCD, FID, NPD, FPD<br>ECD, AIB                    |

Note:

Communication between **Clarity** with **Agilent ICF GC** and listed instruments is handled via LAN. All available GC valves are supported.

Tab. 2: Supported Agilent Sampler, Autosampler and Tray hardware:

|                      | Hardware | Module type                 |  |
|----------------------|----------|-----------------------------|--|
| 8890 and 8860 Series | 7693A    | G4513A Injector             |  |
|                      |          | G4514A Tray                 |  |
|                      |          | G4515A BCR/Mixer            |  |
|                      |          | G4521A LVI Syringe Carriage |  |
|                      |          | G4522A Cooling Accessory    |  |
|                      |          | G4520A Tray with BCR/Mixer  |  |
|                      | 7650     | G4567A Injector             |  |
|                      | 7693A    | G4513A Injector             |  |
|                      |          | G4514A Tray                 |  |
| Intuvo 9000 Series   |          | G4515A BCR/Mixer            |  |
|                      |          | G4521A LVI Syringe Carriage |  |
|                      |          | G4522A Cooling Accessory    |  |
|                      |          | G4520A Tray with BCR/Mixer  |  |
|                      | 7650     | G3430A GC ALS Controller    |  |
|                      | 7030     | G4567A Injector             |  |

|             | Hardware | Module type                 |
|-------------|----------|-----------------------------|
|             | 7693A    | G3430A GC ALS Controller    |
|             |          | G4513A Injector             |
|             |          | G4514A Tray                 |
|             |          | G4515A BCR/Mixer            |
|             |          | G4521A LVI Syringe Carriage |
|             |          | G4522A Cooling Accessory    |
|             |          | G4520A Tray with BCR/Mixer  |
| 7890Series  |          | G2613A Injector             |
|             | 7683A    | G2614A Tray                 |
|             |          | G2615A BCR/Mixer            |
|             | 7683B    | G2613A Injector             |
|             |          | G2614A Tray                 |
|             |          | G2615A BCR/Mixer            |
|             | 7650     | G3430A GC ALS Controller    |
|             | 7030     | G4567A Injector             |
|             | 7000     | G3430A GC ALS Controller    |
| 7820 Series | 7693     | G4513A Injector             |
| 1020 301105 | 7650     | G3430A GC ALS Controller    |
|             | 7000     | G4567A Injector             |

|      | Hardware | Module type                       |  |
|------|----------|-----------------------------------|--|
|      | 7693     | G4516A ALS Controller             |  |
|      |          | G4513A Injector                   |  |
|      |          | G4514 A Tray                      |  |
|      |          | G4515A BCR/Mixer                  |  |
|      |          | G4517A 6890 Plus ALS Card Upgrade |  |
|      |          | G4521A LVI Syringe Carriage       |  |
|      |          | G4522A Colling Accessory          |  |
|      |          | G4520A Tray with BCR/Mixer        |  |
|      |          | G2912A ALS Controller             |  |
|      |          | G4516A ALS Controller             |  |
|      | 7602B    | G2913A Injector                   |  |
|      | 7693B    | G2614A Tray                       |  |
| 6890 |          | G2616A Tray                       |  |
| 6690 |          | G2615A BCR/Mixer                  |  |
|      |          | G2912A ALS Controller             |  |
|      | 7683A    | G4516A ALS Controller             |  |
|      |          | G2913A Injector                   |  |
|      |          | G2614A Tray                       |  |
|      |          | G2615A BCR/Mixer                  |  |
|      |          | G1512A ALS Controller             |  |
|      | 7673C    | G1513A Injector                   |  |
|      | 7673C    | 18596C Tray                       |  |
|      |          | G1926A BCR/Mixer                  |  |
|      | 7673B    | 18593B Injector                   |  |
|      |          | 18596B Tray                       |  |
|      |          | G2615A BCR/Mixer                  |  |
|      | 7683B    | G2613A Injector                   |  |
| 6850 | 7693     | G4513A Injector                   |  |
|      | 6850     | G2880A Injector                   |  |

Note: Communication for GC samplers and trays is handled through the GC.

Tab. 3: Supported Agilent Headspace Sampler hardware

|         | Hardware |
|---------|----------|
| 8697    | G4511A   |
| 8697 XL | G4512A   |
| 7697A   | G4556A   |
| 7097A   | G4557A   |
| G1888*  | G1888    |

\*Note: G1888 requires extra step to be configured. Please contact support at <a href="mailto:support@dataapex.com">support@dataapex.com</a> for further information.

For complete list of supported Windows OS, instrument firmware and Agilent ICF for GC, see Agilent webpages.

# 3 Installation procedure

**Agilent ICF for GC** is not part of the **Clarity** *Typical* installation. To install it, select the *Full* installation or the **Agilent ICF for GC** in the *Choose Components* dialog during the installation of **Clarity**.

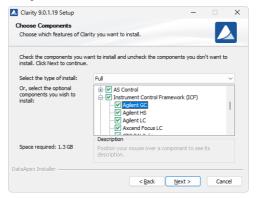



Fig. 2: Full installation of Clarity

## 3.1 Installing Correct Version of Agilent ICF

Clarity expects a specific version of Agilent ICF. Because other programs may also be using Agilent ICF, it is possible they've installed a different version than is supported by Clarity. In that case in the installation you will be prompted to reinstall it in order to install correct version. Going forward with this step is crucial for correct functionality of Clarity and Agilent ICF.

This situation may also occur during Clarity update when the new version contains updated ICF version.

Note: This reinstallation of Agilent ICF may cause that other programs using it, may not function properly.

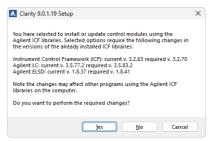



Fig. 3: Installing correct version of Agilent ICF

### 3.2 Network connections

The instruments supported by **Agilent ICF GC** has to be connected to a site network by LAN. It is recommended to attach the **Agilent** hardware directly to the PC avoiding hubs, switches etc. When using a switch or a hub, multiple **Agilent** hardware can be connected to one PC. Always contact your local LAN administrator who can make the appropriate settings.

Caution: Do not use the Agilent 68xx or Agilent 7890 DHCP server feature.

.....

**Cross LAN** cable is primarily used for the direct connection of the instrument and the PC. This cable can also be used for the connection of the device to the switch or network socket, but with older switches, the **straight LAN** cable might be necessary.

#### **LAN Settings**

Caution:

PC: LAN card, TCP/IP protocol.

Both PC and supported **Agilent** hardware should be configured on the same IP range.

Tab. 4: Recommended IP settings:

|                            | Agilent Hardware | LAN card      |
|----------------------------|------------------|---------------|
| IP                         | 192.168.0.200    | 192.168.0.1   |
| Port                       | 80               |               |
| Subnet Mask                | 255.255.255.0    | 255.255.255.0 |
| Default Gateway            | 192.168.0.1      | 192.168.0.1   |
| Accept From IP             | 0.0.0.0          |               |
| Accept From Subnet<br>Mask | 0.0.0.0          |               |

#### Firewall

Ensure that the firewall does not block communication from the **Agilent** hardware.

#### Internet connection

Be aware that many Internet connections are provided using the LAN card. If this is the case a separate LAN card must be configured for each Internet and connected **Agilent** hardware.

## 3.3 Clarity Configuration

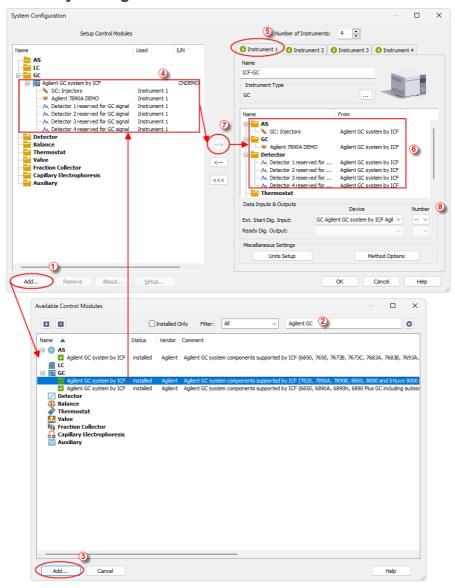



Fig. 4: System Configuration

Caution: Before you start Clarity, ensure there is not any other application controlling the Agilent ICF GC instruments active (for example Virtual Keyboard software applicable for some 78x0 GC types).

- Start the **Clarity** station by clicking on the Aicon on the desktop.
- Invoke the System Configuration dialog accessible from the Clarity window using the System - Configuration... command.
- Press the Add button (See 3.3 on pg. 10.) to invoke the Available Control Modules dialog.
- You can specify the searching filter ② to simplify the finding of the driver.
- Select the Agilent ICF for GC item and press the Add 3 button. The ICF Setup dialog will open.

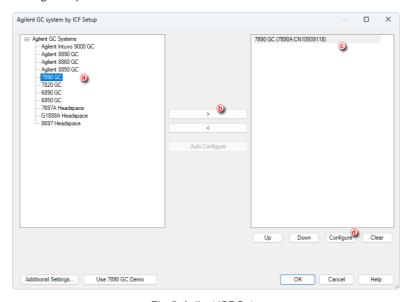



Fig. 5: Agilent ICF Setup

- Select appropriate instrument type ⓐ transfer it from left side using respective button ⓑ to the right side ⓒ .
- Click on the *Configure* button **(i)** in the *ICF Setup* dialog and the *Configure* dialog is displayed for entering the connection parameters.

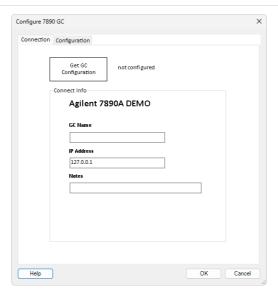



Fig. 6: Configure XY dialog - Connection tab

- After insertion of the IP address or GC Name click Get GC Configuration button.
- On the *Configuration* tab is loaded configuration from the instrument. Additional behavior of the instrument can be preset here.

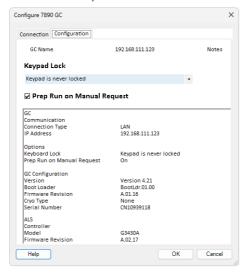
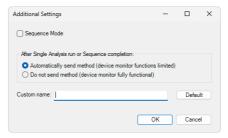




Fig. 7: Configure XY dialog - Configuration tab

- Then click *OK* button in the lower part of the *ICF Setup* dialog and the instrument will then appear in the *System Configuration* including all modules of the instrument (detector, autosampler etc.).
- After previous steps drag and drop the **ICF** icon from the *Setup Control Modules* list 4 on the left side of the *System Configuration* dialog to the desired *Instrument* 5 tab on the right side 6 (or use the button 7 to do so).
- Ext. Start Dig. Input setting <sup>(§)</sup> determines how Clarity handles external start signals from connected instruments:
  - "--" (dash) option Use this if your autosampler and detectors are interconnected by synchronization cables (or built-in together) so that the information about performed injection is passed on without direct input from Clarity. Clarity will initiate recording when it detects that the detector has begun acquiring data. This is the most common setup with Agilent ICF for GC.
  - "1" option Use this setting if your autosampler and detectors are not directly interconnected by cables. Clarity will coordinate the measurement by receiving a signal when the autosampler finishes injection and then triggering the detectors to start measuring. This applies mainly if your GC has an autosampler detectors are not built-in, so it is not so common.
- The configuration dialog of the ICF (Agilent ICF Setup) can be displayed any time by double-clicking on its icon or using the Setup button.

### Additional Settings...

This dialog allows you to configure additional settings of the control module.



#### Sequence Mode

Allows the autosampler to prepare the next vial while the previous run is still ongoing. Clarity will automatically lock one row ahead in the sequence.

To use this feature, the *Enable Sample Overlap* setting must be enabled in the ICF GC method (GC tab  $\rightarrow$  ALS section  $\rightarrow$  Tray/Other).

### After Single Analysis run or Sequence completion

Choose how Clarity sends the method to the device:

 Automatically send method – Clarity sends the method after each single analysis run or after the sequence is finished automatically. Device Monitor functions after the method is sent may be limited in this mode. This mode is necessary if you want to run a continuous loop of Single Analysis measurements. It does not affect Sequence runs.

Do not send method – The method is not sent automatically, allowing full access to Device Monitor functions even when method is sent to the device.

#### **Custom name**

Allows you to rename the module. The custom name will appear in the *System Configuration* dialog including the *Data Inputs & Outputs* section.

If left blank, the module will use its default name. Use the Default button to reset the name at any time.

## 3.4 Headspace Sampler configuration

To properly setup the **Headspace Sampler**, it should be configured as separate ICF control (not within the GC ICF setup described in "Clarity Configuration" on page 10).

Caution:

Before you start **Clarity**, ensure there is not any other application controlling the **Agilent ICF GC** instruments active (for example *Virtual Keyboard* software applicable for some **78x0** GC types).

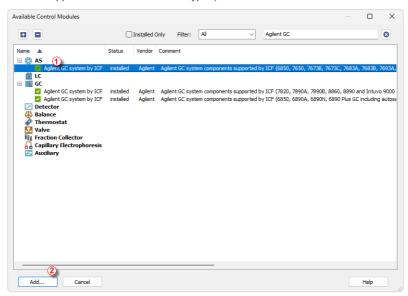



Fig. 8: Available Control Modules

Add a new module in the System Configuration. Select the Agilent ICF for GC from the AS section ① and press the Add ② button. The ICF Setup dialog will open.

Note: For more information about adding new modules in the **System**Configuration refer to the chapter "Clarity Configuration" on page 10.

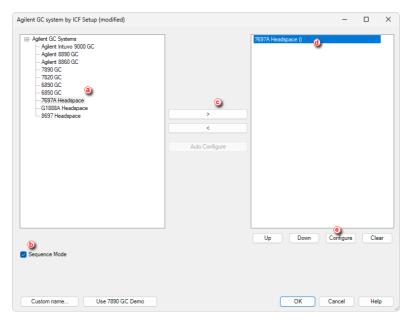



Fig. 9: Agilent ICF Setup

- Select appropriate instrument type ⓐ transfer it to the left side using respective button ⓒ to the right side ⓓ .
- Make sure that the Sequence Mode (b) is selected for the **Headspace** only.
- Click on the Configure button 

   in the ICF Setup window and the Configure dialog will appear.

Caution:

The Sequence Mode enables autosampler to prepare next sample during previous run (sequence will lock one row ahead). In case that GC is used in combination with a Headspace the Sequence Mode must be disabled in the GC setup and enabled in the Headspace setup.

Note:

The *Custom name...* button can be used to alter the name of the module. This change propagates to the module name in the *Setup Control Modules* and in the *Data Inputs & Outputs* sections of the *System Configuration* dialog. Default name is used when the field is left empty.

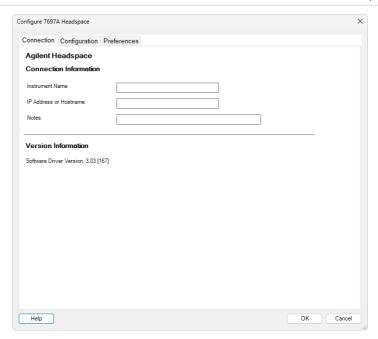



Fig. 10: Connection parameters dialog

- On the Connection tab insert the IP Address or Instrument Name.
- Switch to the Configuration tab and click the Upload Config from Intrument button.

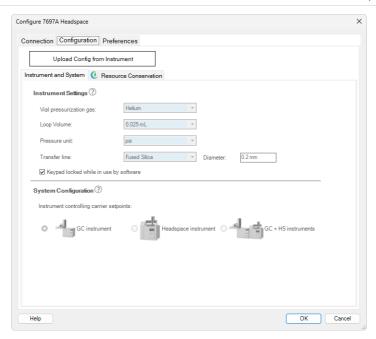



Fig. 11: Configuration parameters dialog

- The configuration from the instrument is loaded on the *Configuration* tab.
- Additional instrument behavior can be preset on the Preferences tab.

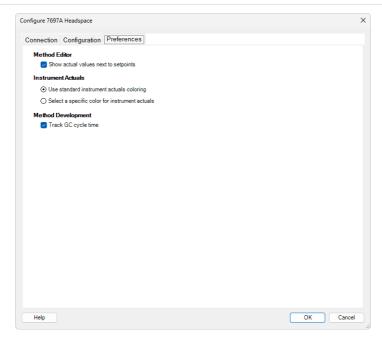



Fig. 12: Preferences parameters dialog

- After the configuration is finished, click the OK button to return to the ICF Setup dialog.
- Then click OK button in the lower part of the ICF Setup dialog and the module will then appear in the System Configuration.

Caution: If you change the configuration of the Agilent ICF system (for example remove and add another instruments), the communication parameters like IP address will be lost and it is necessary to set them again.

Caution: When the ICF Setup dialog is open for extended time, communication between Clarity and the intrument may be lost. In such case an error message will be displayed. After accepting error message it is necessary to start with the instrument configuration from very beginning starting with clicking the Add button (See "Clarity Configuration" on page 10) in the System Configuration dialog.

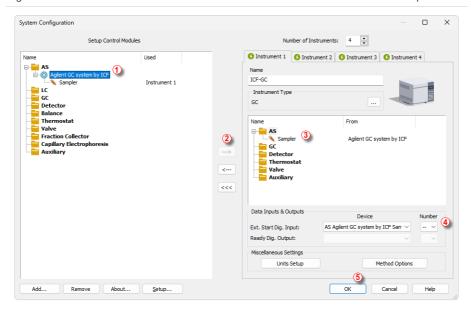
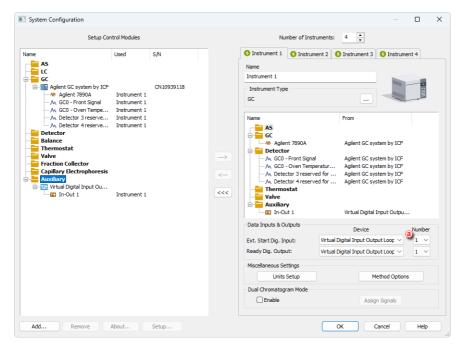
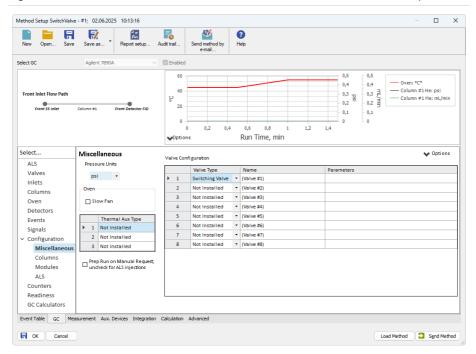



Fig. 13: System Configuration

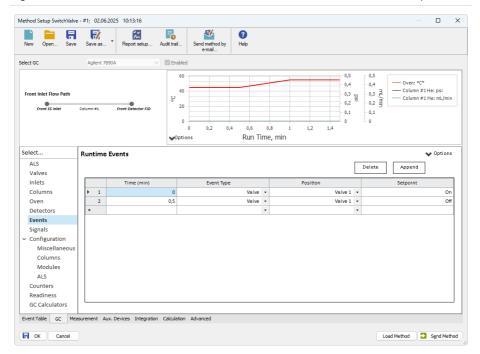
- After previous steps drag and drop the **ICF** icon from the *Setup Control Modules* list ① on the left side of the *System Configuration* dialog to the desired *Instrument* tab on the right side ③ (or use the —> button ② to do so).
- Set the Ext. Start Dig. Input 4 on the right bottom side of the System Configuration dialog to the default value if the sampler is connected to the GC by synchronization cable. The sampler will trigger the run in the GC and it will propagate to the Clarity.
- When the synchronization cable is not present between the GC and the Headspace, the Ext. Start Dig. Input (4) should be set to value "1" [1]. In this case the Headspace triggers the run in Clarity and it will propagate to the GC. For some GC it is necessary to choose the option Clarity starts this device during the setup.
- When all modules have been configured the System Configuration dialog can be closed by clicking the OK button.


Note: The configuration dialog of the ICF (Agilent ICF Setup) can be displayed any time by double-clicking on its icon or using the Setup button.

Note: Press the F1 key to display the **Agilent help** with detailed description of the dialog.


## 3.5 Using Valve for Gas Sampling

Clarity does not support using a *Gas Sampling Valve* to start a run. The valve must be configured as a *Switching Valve* within the GC, and the injection itself needs to be programmed in the GC's *Runtime Events* table. The run in Clarity must then be triggered by other means.


- In System Configuration, select Agilent ICF GC and autodetect the configuration as usual.
- If you want to use the Gas Sampling Valve in sequence measurement, configure also the Virtual Input Output Loop. Both Start Input and Ready Output must be set to this module and have the same number <a>3</a>



- Log to the given Instrument and open the Method Setup to configure the method for the measurement.
- In the *GC* tab, go to the *Configuration Miscellaneous* section, and there set the valve as Switching Valve.



• Then go to the Events section, and set the Time Program to perform the loop filling and injection in given time.



- For a single analysis, GC can be started in several ways: by pressing a button on the GC itself, via an external input, or directly from the Instrument window. If a virtual loop is configured, you can also start a single analysis by changing the Loop output value in the *Device Monitor*.
- When running a sequence, the loop ensures that each analysis starts automatically once the sequence has been launched.

If you want to run Continous measurement in Single Analysis refer to the D138 Continuous Run (Loop) datasheet.

## 3.6 Installation Qualification of Agilent ICF

**Agilent ICF** is an external program developed by Agilent and for that reason it must be validated using their utility. If you have installed Clarity with Agilent ICF, **the IQ is valid only if successful validation of ICF is attached**.

The validation of ICF can be performed directly from the IQ Report.

Caution:

When Clarity expects *Agilent ICF* is installed then **IQ** expects the same. If (due to any reason) the *Agilent ICF* installation is not found within Clarity, the *Installation Qualification Test* status is set by default to *FAILED*. To resolve this, it is necessary to re-install **Agilent ICF** through Clarity reinstallation and then perform **IQ** again.

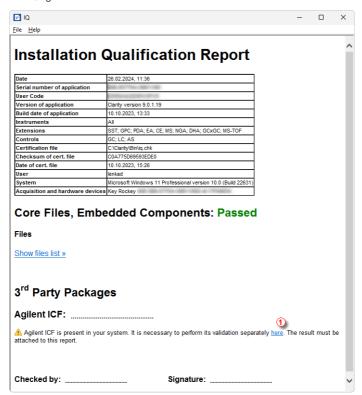



Fig. 14: IQ Report with ICF installation present

Click the link "here" ①, after that it is necessary to click Run in two pop-up windows. Agilent Software Verification Tool window will open. Select what report file type should be generated and define post-qualification actions. The Reports folder field shows the location where the reports will be saved (C:\SVReports\). The folder can be opened

directly by clicking the *Open* in the *Agilent Software Verification Tool* window. Click *Qualify* ② to run the IQ.

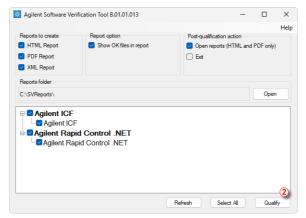



Fig. 15: Agilent Software Verification Tool

The HTML and PDF reports are opened automatically in the default browser/program if the *Open reports* option was enabled.



Fig. 16: ICF Report - PASS

At the end of the generated report, a table of installed drivers and their versions is displayed.

| Details |                                                                      |
|---------|----------------------------------------------------------------------|
| ID      | Description                                                          |
| 45      | Shimadzu GC Driver 2.41                                              |
| 64      | Shimadzu LC Driver Package 2.21                                      |
| 10015   | Agilent Instrument Control Framework - ELSD Drivers Version 1.8 [61] |
| 10024   | CTC PAL3 ICF Driver 1.8.1.0                                          |
| 10028   | Agilent Instrument Control Framework - GC Drivers 4.3 [235]          |
| 10033   | Agilent Instrument Control Framework - Headspace Control 4.3 [117]   |
| 10511   | Axcend Focus LC Driver 1.3.5.4                                       |
| 10538   | Testa.Flowmeter.Driver for ICF 1.0.47.0                              |
| 10540   | Agilent Instrument Control Framework - LC Drivers 3.9.56             |

Fig. 17: ICF Report - Installed drivers table

The individual components can also be found in the component list if the *Show OK files in report* checkbox is selected in the *Agilent Software Verification Tool* window.

## 4 Using the Agilent ICF GC

There are multiple places for setting the parameters of the **Agilent ICF for GC** in the **Clarity**:

• the Method Setup - GC tab

Caution: Before opening the Instrument window with configured Agilent ICF devices, ensure there is not any other PC connected to GC. Otherwise there will be raised an error during the connection.

## 4.1 Method Setup - GC

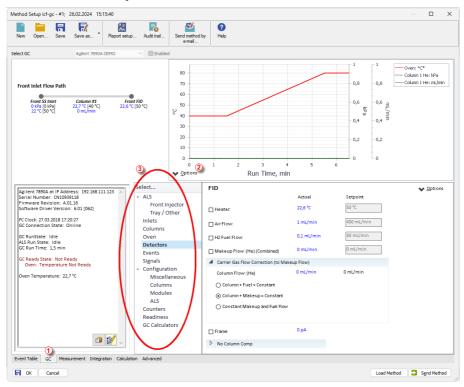



Fig. 18: Method Setup - GC

Note: Press the F1 key to display the **Agilent help** with detailed description of the dialog.

Note:

When both FID and TCD are set to *Manual Pneumatics*, they are controlled by electronic pneumatics regulation (EPR) instead of electronic pneumatics control (EPC). This is normal and is a limitation of EPR-controlled modules in the 8860 GC. In this configuration, you can control their parameters — such as flow or flame ignition — only via the Browser Interface, not through **Clarity**.

From **GC tab** ①, you can set all parameters for GC or AS control and instrument configuration.

- The upper part of the *GC tab* contains a window showing graphical plots or curves that represent the selected method parameters during the run. You can configure these plots using the dedicated button ②.
- For advanced setting of all other parameters use all tabs 3 in the row.

Note: When creating a new method or adapting an existing one, the parameters downloaded from the GC are used instead of the default parameters.

Note: If an autosampler is used, you must follow the numbering rules for vial positions in Sequence and Single Analysis dialogs. Numbers of vials' positions are dependent on used type of tray. When autoinjector without external tray (for example 16 position autoinjector turret) is used the vials' positions numbers inserted to software have to be from interval <101, 116>. A number for vial position equals to vial position +100, for example for vial placed in position 8 a position number is 108. In case that a 100-position tray is used the vials' positions are from interval <1, 100>, for example for vial placed in position 38 a position number 38 has to be used

An autoinjector turret without an external tray does not detect missing vials. If an injection is requested from a position where no vial is present, the injection will proceed as usual. This will result in a chromatogram with an unexpected signal pattern (for example, unusual peaks).

. . . . . . .

Note:

## 4.2 Method Setup - AS

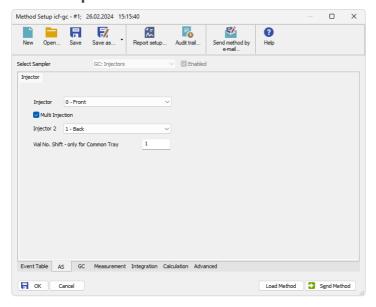



Fig. 19: Method Setup - AS

#### Injector

Default option where the type of the injector can be selected, i.e. front or back.

### **Multi Injection**

By checking this checkbox, both selected samplers are injecting simultaneously.

Note: Such option is visible only when dual tower samplers are used.

#### Vial No. Shift

Vial number shift will be applied for second sampler's vial, selected number will be added to the vial number stated in Sequence.

*Note:* Only when the tray is common for both samplers.

## 4.3 Device Monitor

The *Device Monitor* window can be invoked by the *Device Monitor* command from the *Analysis* menu or using the **Device Monitor** of icon in the *Instrument* window. You may use of icon for accessing *Device Monitor* from all **Clarity** windows. For the **Agilent ICF**, it displays the states of configured **Agilent** system and enables the user to monitor and/or change states of this **Agilent** system.

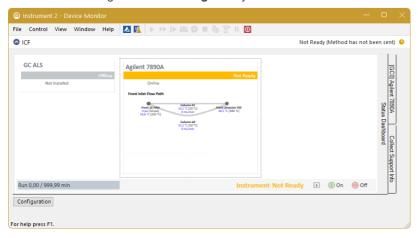



Fig. 20: Device Monitor

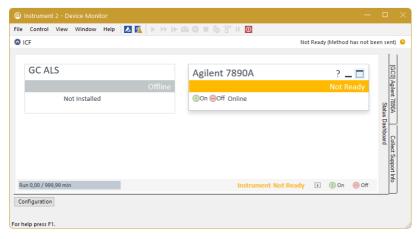



Fig. 21: Device Monitor - simplified view

Button *Configuration* allows to enter and modify configuration of GC directly from the *Device Monitor*. Modifications of configuration may cause that method might need an

adaptation before its use in analysis. The *Configuration* feature is not accessible during running analysis or running *Sequence*.

Note: Press the F1 key to display the **Agilent help** with detailed description of the dialog.

Note: Tabs on right side of the Device Monitor allowing setting collection of diagnostic information are displayed only when Clarity is started under Administrator Windows account. For other Windows accounts, when running Clarity, there are

displayed fewer tabs on the right side of the Device Monitor.

Agilent ICF for GC 5 Troubleshooting

# 5 Troubleshooting

When the remedy for some problem cannot be discovered easily, the recording of communication between **Clarity** and *Agilent ICF* control module can significantly help the **DataApex** support to discover the cause of the problem. The recording can be found in the **Clarity** installation directory (C:\CLARITY \CFG\DEBUG\_LOGS\PGMLOG by default). Older communication log files are removed and replaced by newer ones, therefore, it is necessary to copy out the communication log which was collected during the problem occurrence soon after it happened.

In case you cannot establish communication with Agilent instruments, please review the following issues:

### Check the network connection using the Ping command

The problem in communication between **Clarity** and Agilent instruments may be caused by wrong network configuration, firewall preventing the connection, etc. Run the command line in Windows (for example by pressing the **Windows key** together with the **R** key, in the displayed *Run* window type *cmd* and press *Enter*).

In the command line type ping <ip-address-of-instrument> and press *Enter*. The *IP Address* is the same you entered in the *ICF Setup* dialog.

Agilent ICF for GC 5 Troubleshooting

## 5.1 Specific Problems

#### Clarity can't be run and it displays "Agilent ICF is not installed correctly." message.

Cause:

The cause of the problem is that the Agilent ICF has a different version than expected by Clarity. It can typically happen when other software also using Agilent ICF decides to reinstall it. Thus next time Clarity expects different version than is installed.

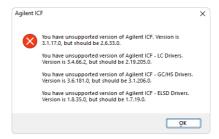



Fig. 22: An Agilent ICF error dialog during Clarity start

Solution: Solution is to reinstall Agilent ICF during Clarity installation. Follow steps

described in the chapter "Installation procedure" on pg. 8.

#### Headspace autosamplers have not been tested.

Cause: There have been implemented Sequence Mode and Enable Sample Overlap

functionality but their usage with Headspace autosamplers has not been tested

yet.

Solution: We are working to fix this situation.

#### Print of Injection Control is not functional.

Cause: Agilent ICF is incompatible with some Clarity printing procedures.

Solution: Method parameters of autosampler control are printed together with another GC

control method parameters using *Instrument Control* item within *Method* section in

Report Setup dialog.

#### ICF problems during installation or operation.

Cause: The cause of the problem might be that *Microsoft .NET Framework* is not enabled.

Agilent ICF requires Microsoft .NET Framework enabled for its function.

Agilent ICF for GC 5 Troubleshooting

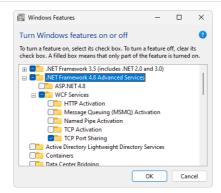



Fig. 23: Turn Windows features on or off - Windows 11

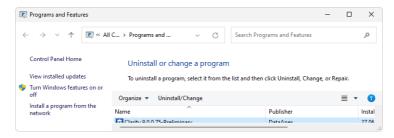



Fig. 24: Location of Turn Windows features on or off in Windows 10

Solution:

Check if Microsoft .NET Framework is enabled in Turn Windows features on or off dialog. If Microsoft .NET Framework is not enabled enable it. Turn Windows features on or off dialog is accessible in Control Panel window under section Programs in its subsection Programs and Features.

Note:

Microsoft .NET Framework version 3.5 is not needed. The required version 4.7.2 or higher can be only disabled in Windows 8.1 or newer, where it is installed with system updates.

#### Signal #X not available.

Cause: Incompatible version of the method.

Solution: Change the signal number in the method from X to the different one or create a

new method.